If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8^2=12^2
We move all terms to the left:
x^2+8^2-(12^2)=0
We add all the numbers together, and all the variables
x^2-80=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $
| 3.3x=46.53 | | 0(x−6)x2−12x+35=0 | | 83/5=-4x+53/5 | | x/2x-4-2=1/x-2 | | (x−6)x2−12x+35=0 | | -8y+4(y-4)=-8 | | x+10x=60 | | 0=−16t2+16t+32+0 | | 3/4y-1=2/5 | | 6-y+3=35 | | -4x+(-20)=16 | | 7➗n=42 | | 6+0.5y=-2(3-1/4y | | Y=1/3x+16 | | 0=16t-5t-36 | | 2x/3=-1/2+-3x/5 | | 10+6g=10 | | -4/7-1/3u=-1/2 | | x-6+9=-13+2 | | 12x+10=130° | | s/12-17=8 | | 3x^2-12x-108=0 | | 4(4x-2)=17 | | 5x30=40 | | M(x)=x^2+11x | | 5y+-2=153 | | (8+u)(5u+9)=0 | | c+34=−14 | | u^+3u-4=0 | | 8(y-7)=11y+56 | | 2=1.1^x | | 3/8(x+8)-3(4x+5)=22/5 |